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We consider the ensemble of random symmetric n x n matrices specified by an 
orthogonal invariant probability distribution. We treat this distribution as a 
Gibbs measure of a mean-field-type model. This allows us to show that the nor- 
malized eigenvalue counting function of this ensemble converges in probability 
to a nonrandom limit as n --* oo and that this limiting distribution is the solution 
of a certain self-consistent equation. 
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1. INTRODUCTION,  M A I N  RESULTS, AND EXAMPLES 

Consider the ensemble of random real and symmetric n x n matrices M 
defined by the probability distribution 

p,,(M) dM=(Zl~ -t  exp[--n Tr V(M)] I-I dMo (1.1) 
i~<j 

where Z~, m is the normalization factor and V(2), 2eR ,  is a real-valued 
function satisfying the following conditions: 

(a) V(2) is bounded below. 

(b) V(2)/> (2 + e)In [2[ for some e > 0, if [2[ is large enough. 

(c) There exists y > 0 such that for any L > 0 

IV(,l,)-V(22)I<<.C(L)I,l,-221 r if 12, l, [22[ ~<L (1.2) 
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We will call ensemble (1.1) the generalized orthogonal ensemble 
because its density with respect to the "Lebesgue" measure dM is obviously 
orthogonal ingariant. The simplest example of this ensemble is the Gaussian 
orthogonal ensemble (GOE) corresponding to II(2)= 22/4a 2. In this case 
the entries M~, i ~< j, are independent Gaussian random variables, which 
allow explicit calculation of many important spectral characteristics Of the 
GOE (see, e.g., ref. 2 and references therein). One of the simplest character- 
istics that is rather interesting in many respects is the normalized eigenvalue 
counting function 

N, , (2 )=n- '  ~ 1 (1.3) 
2 i < 2  

The limit of the expectation E{N,,(2)} of (1.3) with respect to the distribu- 
tion (1.1) for n--* ~ is called the integrated density of states (IDS) and is 
denoted by N(2): 

lim E{N,,(2)} =N(2) 
t l ~  o~ 

According to Wigner, I~ for the GOE [ i.e., for the (1.1) with 1I(2)= 22/4a 2 ] 
N(2) exists and its derivative p(2) is 

N,(2)=p(~)={(o2na2)-~(4a2--22)t/2 if 121 ~<2a 
otherwise (1.4) 

This limiting eigenvalue distribution is known as the semicircle (Wigner) 
law. Since Wigner's paper ~ appeared, numerous aspects of the random 
matrix theory have been extensively developed and used in probability 
theory, nuclear physics, quantum chaology, quantum field theory, and 
statistical mechanics (see refs. 2-5 and references therein). However, most 
of the rigorous results in this field concern the GOE or other ensembles 
with statistically independent although not necessarily Gaussian entries for 
i~< j, In the latter case the joint probability distribution of an ensemble is 
not invariant with respect to the transformations M ~  OMO*, 0 c O(n). 
On the other hand, the distribution (1.1) is orthogonal invariant for any 
V(2), but if 1I(2)r 2 for some a > 0, then (1.1) implies rather strong 
statistical dependence between the entries M U, i ~< j. The study of a unitary 
invariant analog of (1.1) [i.e., the case when M's are Hermitian matrices 
and 1I(2) is an even polynomial with nonnegative coefficients] was started in 
the important physical papers c6" 7~ motivated by quantum chromodynamics. 
In recent years similar ensembles with polynomial V(2) have been actively 
studied in connection with a certain nonperturbative approach in bosonic 
string theory and two-dimensional gravity (see refs. 5 and 15 and references 
therein). 
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In this paper we show rigorously that under conditions (1.2) the 
random eigenvalue distribution (1.3) converges in probability to the non- 
random limiting IDS as n ~ c~. We also give a method of calculation of the 
IDS and use this method to consider some examples of the IDS, including 
the explicit form of. the IDS for some polynomial V's (these forms were 
found by different methods in refs. 7-9 and 17). More detailed study of the 
properties of the IDS of ensemble (1.1) as well as analogous results for 
some other ensembles will be published elsewhere. 

Our starting point is the joint probability distribution of the eigen- 
values corresponding to (1.1), 

p,,(2~,...,2,)=Q,7~exp(-n ~ v(21))1-I I;te-2/[ (1.5) 
i =  1 i < j  

(see, e.g., ref. 2). According to Wigneg ~> (see also refs. 6 and 10), (1.5) can 
be rewritten as the canonical Gibbs distribution 

p,,(2~ ..... 2,) = Q,~-' exp{ -nH,,(2,,..., 2,,)} (1.6) 

corresponding to a one-dimensional system of n particles with the 
Hamiltonian 

..... v(:,)-:- y. In 
i =  I n i < j  

(1.7) 

at the temperature n -1. The first term of the r.h.s, is analogous to the 
energy of particles due to the external field V(2) and the second term is 
analogous to the interaction (Coulomb) energy. 

This statistical mechanical interpretation of the density (1.5) was 
considerably developed and efficiently used by Dyson. tl~ 

It is important that the density (1.6) and the Hamiltonian (1.7) 
contain explicitly the "number of particles" n. This allows us to regard 
(1.6) and (1.7) as analogs of molecular field models of statistical mechanics. 
This analogy was used in physical papers. <~'6~ The rigorous treatment of 
the molecular field models of a rather general form was given by several 
authors (see, e.g., refs. 10-13). In particular, refs. 13 and 14 contain an 
approach whose extension allows us to carry out a rigorous analysis of the 
Hamiltonian (1.6). The result of this analysis is as follows: 

Theorem 1. Let the ensemble of random matrices be specified by 
(1.1) in which a real-valued function V(2) satisfies condition (1.2). Then 
the normalized eigenvalue counting function (1.3) corresponding to this 
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ensemble converges in probability to the nonrandom absolutely continuous 
IDS N(2) whose density is uniquely determined by the conditions 

p(2)~O (1.8) 

I p ( 2 ) d 2 =  1 (1.9) 

- I  In 141-421 p(21) p(k2)d21d22<~ (1.10) 

the function 

u(2) = y In 12-2 ' I  p(2') d 2 ' -  V(2) (1.11) 

is bounded from above, and 

supp p(2) c {2: u (2 )=max  u(2')} 
2' 

(1.12) 

Theorem 1 will be proved in the next two sections. Here we give 
several remarks and examples. 

Remarks .  (i) The random matrix theory considers also the 
ensembles of Hermitian and so-called quaternion real random matrices 
whose probability densities are invariant under unitary and symplectic 
transformations, respectively (the Gaussian cases of these ensembles are 
known as GUE and GSE). The eigenvalue probability densities of these 
ensembles differ from (1.1) in the powers of the factor IA(2~ ..... 2,,)1, where 

A(2, ..... 2,,) = I-[ ( 2 , - 2 j )  (1.13) 
i < j  

This power is 2 for the unitary ensemble and 4 for the simplectic ensemble. 
Therefore the general form of the joint eigenvalue probability distribution 
for all three ensembles is 

p,,p(2~,...,2,,)=Q,~lexp {-n ~. v(2~)} I-I 12,-2jIP (1.14) 
i ~ 1  i < j  

where fl = 1, 2, 4 for the orthogonal, unitary, and symplectic ensembles, 
respectively. 

Our main result given by Theorem 1 is valid for fl = 2, 4 as well if we 
introduce the factor fl in front o'f the integral of the r.h.s, of (1.11). The 



Random Matrix Theory 589 

analogs of formula (1.7) in these cases have the factor fl in front of the 
double sums, i.e., fl plays the role of a coupling constant of the respective 
n-particle system. 

(ii) Relation (1.12) is just the zero-temperature case of the self- 
consistent equation for the particle density and is well known in molecular 
field theory. Indeed, we have mentioned before that the large parameter n 
plays different roles in formulas (1.6) and (1.7). In the former, n plays the 
role of the inverse temperature, while in the latter, the factor n-~ allows us 
to treat (1.7) as a molecular field-type Hamiltonian. Thus, if the factor n in 
(1.6) were replaced by the inverse temperature (kT)-1, then the arguments 
which we used to prove Theorem 1 would lead to the standard molecular 
field equation for the particle density 

e x p { - ( k T )  -1 u(2)} 
P(2)=  I e~p{- - - (k -~  i u - ~  dp 

[in fact a similar equation will appear below; see (2.11)]. Now, if in this 
equation we perform the limiting transition T--* 0, we obtain (1.12). 

Thus, from the statistical mechanical point of view, Theorem I asserts 
that the zero-temperature case of the molecular field equation for the model 
(1.7) can be obtained not only after subsequent limiting transitions n--* oo 
and then T---, 0, but also as a result of simultaneous limiting transitions 
n --* 0% T ~ 0, provided that the product n T is fixed. 

(iii) By the method of Theorem 1 (see Proposition in the next section) 
one can also show that the expression for the ground-state energy of the 
statistical mechanical model (1.6), i.e., E = - l i m  . . . .  n -2 In Q,,, has the 
following form: 

E= - ~ ; l n  I),-21 p(2)p(2')d2d,),'+ f p(2) V(2) d2 (1.15) 

where p(2) is given by Theorem 1. Moreover, in total agreement with 
statistical mechanics, E can be obtained as the minimum value of the 
"electrostatic" energy (cf. results of ref. 6) 

E=min(-~fln[2-2'[v(d2) v(d2')+; V(2) v(d2)} 

of two-dimensional (line) charges whose distribution on the real line is 
described by the measure v(.), v (R)= 1. Then Theorem 1 implies that 
under its conditions a minimizing measure has the density p(2) satisfying 
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( 1.8)-( 1.11 ). This density is the unique solution of the extremum equation 
of the variational problem 1.12): 

f l f  In 12-2'1 p(2') d2' = V(2) +const,  2~supp p (1.16) 
% upp p 

If we differentiate (1.16) with respect to 2, we obtain the singular integral 
e.quation for p(2): 

firs p().') d2' V'(2), 2~ supp p (1.17) 
upp, 2 - 2 '  

This equation has a simple electrostatic interpretation: it is just the equi- 
librium condition for the continuously distributed charges of strength 
fl~/2 subjected to the external electrostatic potential V(2) [electric force 
- V ' ( 2 ) ] .  This equation appeared for the first time in Wigner's work (~) 
and afterward was used in numerous works in this field (see, e.g., 6--8, 
10, 15, and 17). This equation allows us to find p(2) and its support in a 
number of interesting cases (see examples below and also in refs. 6-8, 15, 
and 18). 

(iv) Repeating almost literally the arguments which we used to prove 
Theorem 1, we can also prove an analogous result for a more general 
ensemble of random matrices with an orthogonal invariant density: 

p,,(M) = (Z(,~ -~ exp[ -nV,,(2,  ..... 2,)] (1.18) 

where the function V,, is 

+ k" 1 Vn(/~ l ..... 2,) = V(2i) E E V(k}(2il ..... '~'k) 
"~1 9 k ]  n ( k -  2) 
t = -  i l  ~ i 2 ~  . . .  v ~ i k  

with bounded, symmetric, and H61der continuous functions V ~k), 
k = 2, 3 ..... satisfying the following condition. The functional 

" 1 t �9 k 
U(c) =k~= ~.. J V'*'(A, ..... 2~) I-[ c(2,) d~; (1.19) 

2 i = l  

is convex in the space of smooth functions with compact supports. 

T h e o r e m  2. Let the ensemble of random matrices be specified by 
(I. 18) in which a real-valued function V(2) satisfies condition (1.2). Then 
the normalized eigenvalue counting function (1.3) corresponding to this 
ensemble converges in probability to the nonrandom absolutely continuous 
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IDS N(2) whose density is uniquely determined by conditions (1.8)-(1.10) 
and (1.12), where now u(2) is [cf. (1.11)] 

u(~) --f  In 12--2'1 p(2') d2 ' -  v(,~) 

_ 1 Vk(2, 2~,..., 2,) 1-[ p(2,) d)q (1.20) 
k = 2  i = 1  

and as before has to be bounded from above. 

We mention here two examples where condition (1.19) is satisfied. The 
first one corresponds to Vt*~= 0, k >~ 3, and Vt21(21,22) defining a positive 
operator in the space L2(--/,/), where l is large enough. In particular, 
if F(2)~L~(R) has a nonnegative Fourier transform, then we take 
Vt2)(21,).E)=F(21--22). In the second example we take the sequence 
{--v(k)~'Jk=2 ~ to be a sequence of moments of some random process ~(2), 
2~R: vtk~(21 ..... 2~) =M{~(21) ..... ~(2,)}, k = 2 ,  3 ..... where the symbol 
M{ ... } denotes the mathematical expectation with respect to this random 
process. We assume that the generating functional 

exists for any smooth function c(2) with a compact support. It is easy to 
see that both examples satisfy condition (1.19). 

(v) Our results imply that the first correlation function of the 
statistical mechanical system with Hamiltonian (1.7) satisfies the self- 
consistent (molecular field) equation (1.12) in the limit n = oo and the second 
(and every higher) correlation function is a product of the first correlation 
function in this limit. These facts are also in full agreement with statistical 
mechanics, according to which in a molecular field model there is no 
correlation between particles at distinct points (see, e.g., ref. 13). However, 
the question of primary interest in the random matrix theory is the 
behavior of correlation functions for interparticle distances of the order 1In. 
In particular, the limit of the second irredubible correlation function 
P,,(21,22) - p(21) p(22) for 2j. 2 = 2o + ~.,_/Np,,(2) determines the proba- 
bility distribution" of nearest-neighbor eigenvalue spacings, which is of con- 
siderable interest in statistical nuclear physics 12) and quantum chaologyJ 4) 
According to the universality conjecture, t2~ the form of this limit does not 
depend on a concrete ensemble [i.e., on V(2) in (1.1)] and depends only 
on fl in (1.14). The proofs of this hypothesis for a variety of concrete 
ensembles are given in refs. 2, 9, and 10. 
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Examples. (i) V(2) is a twice differentiable convex function, i.e., 
V"(2)>~0. In this case it follows from (1.11) that u(2)+ V(2) is concave 
for all 2, 2r  Thus, according to (1.12), the support of p(2) is an 
interval (a, b). Besides it can be shown that, under our conditions on V(2), 
p(2) is a bounded function for a<~2<<,b. Then, according to ref. 18, the 
singular integral equation (1.17) has a unique bounded solution: 

1 (b V'(kt) d~ 
p(2) = fin----- 5 [ (b - 2)(2 - a) ] ,/2 J~ 2 ~ (a, b) (2 - kt)[ (b - p)(At - a ) ]  l/_, 

(1.21) 

provided that 

~ V'(p) a~ 
[ (b - kt)(p - a ) ]  1/2 = 0 (1.22) 

This condition and the normalization condition (1.9) determine both 
endpoints a and b. If V(2) is an even function, then a = - b ,  (1.22) is 
trivial, and b is determined by (1.9). 

Using the identity 

fb - 0 ,  2~(a,  b) (1.23) 
au 

( 2 --,u )[ ( b - kt )(l.z - a) ] 1/2 

we can rewrite (1.21) in the manifestly positive form 

" (V ' (p )  - V'(2)) da f' p(2) (1.24) 

(ii) V(2) = [21 ~. For m > 1, fl = 2 this ensemble was studied in ref. 9 
by the orthogonal polynomial techniqueJ 2~ It was proved that p(2) has the 
form 

p(2) = B~  I v~(B~ 12) (1.25) 

where 

1 

B~= 2~ Io t'(1 - t 2 ) -1 /2  dt 

v~ , ( t )={On- '~ l ,  t r ~ - ' ( r 2 - t 2 ) - l / 2 d z  if It[~<l 
otherwise 

"It is easy to check that expression (1.25) satisfies conditions (1.8)-(1.12) for 
all 0t > 0. Therefore on the basis of Theorem 1 we conclude that p(2) has 



Random Matrix Theory 593 

the form (1.15) for all positive 0c Notice that for 0 < 0t < 1 this density is 
unbounded at zero. For 0c > 1, (1.25) can also be obtained by solving 
Eq. (1.17). 

(iii) V(2) =(44/4)+m2(22/2). This ensemble was studied in refs. 6 
and 7, motivated by quantum field theory (see also refs. 15 and 17). If 
m2>~0, then V"(2)t>0, and we can use (1.24) with a = - b  to find p 
explicitly: ( ~ 

p(2) = 1_~ (a 2 _ 42 ) 1/2 2 z + m 2 + -2- (1.26) 

It is easy to check that this formula satisfies (1.8)-(1.12) if m2~> --2 -3/2. 
But for m 2 < - 2  -3/2 the r.h.s, of (1.26) is negative in a certain 
neighborhood of the origin. Therefore it is natural to look for the solution 
of (1.17), whose support consists of two symmetric intervals, ( - b, - a) and 
(a, b). By using the respective formulas from ref. 18, it is easy to find that 
for m z < -- 2-3/2 

p(2) = n - '  141 [ ( b 2 - 2 2 ) ( 2 " - - a 2 ) ]  u2, 

provided that 

a 2 <~ 4-' ~< b e 

This condition and normalization condition (1.9) determine the endpoints 
a and b: a2=  - a / / 2 - m 2 ,  b 2 = x / ~ - m  2. 

(iv) V(2) = (26/6) +g(24/4) + m2(22/2). In this case support p(2) con- 
sists of one, two, or three intervals. The former two cases can be studied 
by a method analogous to that used in the previous example. The latter 
(three-intervals) case corresponds to V(2) having three well-pronounced 
wells (g,~ - 1, Ira21 ~> 1) and requires additional arguments. Indeed, for an 
even r.h.s, in (1.17) the condition of unique solubility of this equation in the 
class of bounded nonnegative functions supported on three intervals 
S =  {4: 22<~a z, b2~22 ~<c 2, O < a < b < c <  ~ }  is ~19) 

~v ' (2)  d2 0 
Is ~-~-~-~-] ~ = (1.28) 

where X ( 2 ) = ( a 2 - 2 2 ) ( 2 2 - b 2 ) ( 2 2 - c  2) [cf. (1.27)-I. Thus, we have two 
equations [(1.28) and (1.9)] to find three endpoints. The statistical 
mechanical (or electrostatic) meaning of this fact is simple: we can fix 
arbitrarily charges p t and P2 of central and both additional wells provided 

f~ v ' ( p ) a  d• - 0  (1.27) [ (b 2 _ p2)(p2 _ a 2) ] ]/2 
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that  P l - F 2 p 2 =  1. This yields a one-parameter  family of  charge distribu- 
tions. We obtain this third condition allowing us to determine uniquely all 
endpoints  if we use Eq. (1.12), which implies u ( a ) =  u(b), or if we minimize 
the energy (1.15). 

2. P R O O F  OF T H E O R E M  1 

To study N,,(2), we will introduce its Stieltjes t ransform 

dN,,(2) f g, ,(z)= j ~---~, , ~z  v~O (2.1) 

and prove that g,,(z) has a non random limit. To  this end it is sufficient to 
prove the two following statements. The first one is the self-averaging 
proper ty  of g,,(z), i.e., 

d , , ( z ) = E { l g , , ( z ) - E { g , , ( z ) } l  2} ~ 0 ,  n ~  c~ 

and the second is the existence of the limit E{g , (z )}  for n---, ~ .  In fact we 
prove that  

In n 
d,,(z) <~ const �9 - -  (2.2) 

?/ 

It is easy to see that  d,,(z) is 

d~. i d,~j 
d,(z) = 2  <~) I(P, , () , , , ) ,2)-P, , () , , )P, , ()-2))  - -  

n- i .. z - ~ .  i e - k j  

1 " ~ - -  2 +;2=, fp,,(x:) i Elg,,(:)) 

where 

(2.3) 

E{g, , ( : )}=~p, , ( ) , )  d2 (2.4) 

and p,,(2~) ..... p,,(2~ ..... 2k) are the correlation functions of  the Hamil tonian  
(1.7), i.e., 

p,,(2~ ..... 2k )=  Q~-~ ~exp{ - n i l ( 2 ,  ..... 2,)} d~k+l" .-d2,,, k =  I, 2 .... (2.5) 

where Q,  is the same as in (1.5). By virtue of  Lemma  1, proved in 
Section 3, to find the limits of  p,,().~ ..... 2k) for n ~ ov it suffices to restrict 
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our considerations to a certain finite interval ( - L ,  L). To simplify the 
notations, let us change the variables in formulas (2.3)-(2.5), 

Xi = 2i/2L; V(X) = V ( 2 x L  ) 

We obtain the Hamiltonian 

H ( x ,  ..... x , ) =  ~ v(xi) - 1  ~ In [Xe-Xjl 
i =  I l~ i < j  

in which Ix, I ~ 1/2, i =  1 ..... n. We are interested in the large-n behavior of 
[cf. (2.5)3 

f,/2 exp{ - n i l ( x ,  ..... x,,)} dXk+, �9 dx,,, k = 1, 2 .... p, ,(x,  ..... x,_) = Z ,  ' ~_ i/2 

(2.6) 

with 

~,/2 exp{ - n i l ( x , ,  x 2 ..... x,,)} dx,  .. dx,, 
Z n  : ~ - -  , / 2  

We will analyze this behavior by using a certain modification of the 
method of study of mean-field models proposed in ref. 13. For any function 
c(x)  satisfying the inequality 

f 1/2 

l/In Ix-yl c(x)c(y)dxdy<oo (2.7) 

introduce the "approximating" Hamiltonian 

Ha(A" 1 ..... X,,; c) = v(xi) - In I x , -  Yl c(y)  dy 
o l/V i = 1  i = '  -- - 

+�89 I) In Ix-yl c(x)  c ( y ) d x d y  (2.8) 
-- 2 

Let 

1 f ,/2 ~,,(c)  = - -  In exp { - - nH~ (x l  ..... x,, ;  c)}  dx ]  . . .dx,,  
I '/2 ~=.-- 1/2 

n + 1 /,,/2 
-- | In Ix-  yl c(x) c(y) dx dy 

2n ~-  1/2 

--1/2 dx exp - - , / ' 2  In I x -  y[ c(y)  + ! l n f  1/2 {--nv(x,-Fnf '/2 dy} (2.9, 
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Then by the Bogoliubov inequality 

1 
R ~  ~,,(c) ---~ In Z,, ~ R,, 

where 

and 
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f 1~2 R(cl=(nZ,,) -] ( H - H , ) e x p { - n H }  dx,. . .dx, ,  
- -  1 / 2  

f 1~2 R~(c)=(n) -l exp{ -n2~,,(c)} (H-H, , )  
- 1 / 2  

xexp{ --nH,(xl ..... x,,; c)} dxl...dx,, 

(2.10) 

c,,(x) = p,(x) (2.12) 

[the existence and the uniqueness of solution (2.12) are proved in 
Lemma 3 of Section 3]. Then, by (2.11), R,,(c,,)= 0. Thus, we have proved 

n - 1  I 1/2 In Ix - Yl (p,,(x, y) - p.(x) p.(y) ) dx dy R(c) ~n -1/,_ 

n - -  1 ft/2 
--1/2 In Ix -- Yt (p,,(x) -- c(x))(p.(y) -- c(y)) dx dy 

1 fl/2 
+ ~n -_ 1/2 In Ix - -  Yl (p,,txl - c t x l )  c ( y )  dx de 

To obtain the expression for Ra, we have to replace p,,(x) and p,,(x, y) in 
this formula by p.(x) and p . ( x ,  y), which are the correlation functions of 
the approximating Hamiltonian (2.8): 

exp{ -nv(x) + n ~]12 In Ix - el c(y) dy} 
pa(x) = (2.11) 

j,/2 e x p { - n v ( x ) + n ~ ] / ~ l n  I x -  yl c(y)dy} dx - -  1 / 2  

and p.(x,y)=pa(x)pa(y).  Let us set c(x)=c,,(x), where c.(x) is the 
unique solution of the "molecular field" equation: 

Using the fact that H and H .  are symmetric with respect to the x,., one can 
rewrite R as follows: 
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the inequality R ~0 .  To estimate R(c,,) from below, let us introduce the 
operators G, A, and A,, defined in L 2 ( -  1, 1 ) as follows: 

f 
l / 2  

(Gf)(x) = --1/2 (p,,(x, y)--p,,(x) p,,(y)) f (y )  dy 

f 1~2 (Af)(x) = -- In Ix -- y] f ( y )  dy (2.13) 
-- 1/2 

f 
]/2 

(A,,f)(x) = -- a,,(x -- y) f (y))  dy 
- -  I/2 

where the function a,,(x), x E ( - I ,  I), is defined by the formula 

3 ~'In Ixl if Ixl>~n - = -  
a"(x)=[ (o~+3) lnn_n,+3(Ix l_n-~-3)  Ixl~<n - ~ - 3  

(2.14) 

with ~ = 2/y, y being the H61der constant of  the function /I(2). In terms of 
the operators (2.13), R,,(c,,) can be expressed as 

n--1 n--1 A -c"))-l(A(P"--c")'c")~n R,,(c,,)=---~nTrAG+---~n( (p,, - c,,), (p,, 

n - 1  n - 1  
- 2n TrA"G+--~n (A(p"-c") '  (p,,-c,,)) 

1 n - 1  
2n (A(p, ,-  c,,), c,,) + ~ Tr(A - A,,)G (2.15) 

On the basis of  Lemma 4 of  Section 3 one can conclude that 

--A,,)G In n Tr(A ~< const �9 - -  (2.16) 
n 

Besides, if we consider the operator  G,, defined in L 2 (  - -  1, 1 ) as 

1 
(G,,f)(x) = (Gf)(x) + p,(x) f (x)  (2.17) 

n - 1  

then G,, is a positive operator. Indeed 

E 1" 1 f,/2 ~ ( f ( x i ) -  ( f ( x , ) ) ) -  
(G" f ' f )=Z , ,n (n - -1 ) -1 /2  i~l 

xexp{ -nI-I(xl ..... x,,)} dxl . . .dx,  
1 n 

-t n ( n - l )  ~ (f(xi))2>>'O 
t 

(2.18) 

822/79/3-4.7 
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where ( f ( x ) )  = ~ f ( x )  p,,(x) dx. According to Lemma 2, the operator A,  is 
also positive and so we have 

1 
0 < Tr A,, G. = Tr A,, G + a,,(0) 

n - 1  
(2.19) 

Finally, on the basis of relations (2.10)-(2.19) we obtain 

n -  1 Inn 
0 ~< Tr A, G, + ~ (A(p,, - c,), (p,, - c,,)) <<. const �9 n (2.20) 

According to Lemma 2 of Section 3 and (2.18), both terms in the r.h.s, of 
(2.20) are nonnegative. Thus each of them admits the same bound. Now we 
are ready to estimate d,,(z) of (2.2). Since it is easy to see that the second 
sum in the right-hand side of (2.3) is bounded from above by n-~(~3z) -2, 
it suffices to estimate the expression 

fl/2 G,,(x,y) dx dy (2.21) 
D(z) = ~-,/2 z -~x  ~.- y 

for any z, .~zr Introduce the projection operator P~ defined in 
L2( -- 1/2, 1/2): 

(pzf)(x)=7_~_..~ ~ fl/2 f(Y) dy (2.22) 
. - - X  --1/2 z - - y  

Then D(z)=Tr  P~G,,. Let us show that 

P~ ~< const. A, (2.23) 

To this end, consider the function q(x)~ L2(- 1, 1 ): 

( 2 ( x + l ) ( z + � 8 9  -1 if - l < x ~ < - � 8 9  

q ( x ) = J ( z - x ) - '  if - �89189 

1 . 2 ( 1 - x ) ( z - � 8 9  if � 8 9  

and q(x + 2k) = q(x), k = 1, 2 ..... This function is 2-periodic and continuous 
and its first derivative is bounded. Therefore its Fourier coefficients qk 
satisfy the inequality 

k 2 [qk[2~< [q'(x)[2dx<~(~z)-3+(.~z) -2 
k = 0  --1 
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Consider the operator B, defined in L 2 ( - 1 ,  1) by formula (3.11) below 
with l (x )=  -an(x) ,  where an(X) is defined in (2.14). Let a~, k) be the corre- 
sponding Fourier coefficients. It follows from Lemma 2 and (2.14) that 

(B,7,q,q)2= 2 ~. Ok)-t ( a n )  I q ,  I 2 
k = 0  

<~2 ~" (atok)) -I Iqkl 2 
k = 0  

~<const ' ( Iqol2+ Z k21qkl2)~ <cOnst 
k = l  

(2.24) 

where the symbol ( . , . )2 denotes the scalar product in L2(- 1, 1). Let us 
take any function f E L 2 ( -  1/2, 1/2) and consider its continuation f of the 
form (3.13). Then (2.24) implies 

(P.-f, f ) =  I(f, q) l  2 = I( B)/2 f ,  B,~l/2q) 212~< ( nn.f, f)2 ( B,-~' q, q)2 

~< const �9 (A,,f, f )  

We have proved (2.23) and now on the basis of (2.20) we obtain 

I n  n 
D(z) = Tr G,,P~ <~ const �9 Tr G,,A,, <~ const . - -  (2.25) 

n 

As mentioned above, this estimate proves (2.2), i.e., the self-averaging 
property of gn(z). 

Let us consider now p(x)= lim . . . .  Cn(X). Lemma 3 guarantees that 
this limit exists and is uniquely determined by the relations (1.8)-(1.12). To 
prove Theorem 1, it is enough now to prove that 

(P_.(p,, - p), p,, - p) --* 0 as n ---, ~ (2.26) 

Since from Lemma 2 it follows that A,,<~A, we get from (2.23) the 
inequality P~ ~<const .A. Thus (2.26) follows from (2.20) and Lemma 2. 
Theorem 1 is proved. 

Let us reformulate the result of Theorem 1 in terms of statistical 
mechanics. 

Proposition. Let us consider an n-particle one-dimensional 
statistical mechanical system specified by the Gibbs distribution 

p,(2,  ,..., 2,) = Q,7' exp{ -nil , ,(2, ..... 2n) } (2.27) 
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where the Hamiltonian H,  is given by (1.6). Then, in the thermodynamic 
limit n =  0% the ground-state energy per site is (1.15), the first correlation 
function satisfies the self-consistent equation (1.12), and all the higher 
correlation functions are products of the first one. 

Proof. Inequality (2.10) together with (2.11), (2.15), (2.16), and 
(2.20) implies that there exists 

E l = - -  lim l ln Z . = -  lim gt.(c.) 

Therefore 

u p p  p u p p  p 

The other assertions of the Proposition follows from inequality (2.25) 
supplemented by the fact that, according to Lemma 2 of Section 3, the 
operators .4, .4,, are positive. 

Remark .  For the unitary invariant analog of (1.1), i.e., for fl = 2 in 
(1.5), the self-averaging property (2.2) and the resulting weak factorization 
of p,(2],  22) into the product p,,(2])P,,(22) can be easily proven by using 
the orthogonal polynomial technique, t2> according to which 

p,,(21 ..... 2k) = ~ p,,(21 ..... 2,) d2k+ l "'" d2,, 

F/k 
m 

n ( n -  1 ) . . . ( n - k +  1) 
det ILK.(2,, Aj) * [[i,j=l (2.28) 

where 

Z <"'(.) 
/'/ I =  I 

(2.29) 

~b,"'(2) = exp {--  2 V(2)}P,")(2) 

and P~"~, l--0,  1 ..... are the orthonormal polynomials with respect to the 
weight exp{-nV(2)} .  In particular, 

p(2) = 1 K,,(2, 2) 
n 

n 
P"(21' 22) = n  -- 1 (p,,(2,) p,(22) -- K,](21, " ~ 2 ) )  

(2.30) 
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These relations yield 

K,,(,~,, ).) d~, fK~(/q,l,22)d,~l d,~, 

According to the orthonormality of the system { ~ " ) } ~  ~, 

= KT'()'l' - - n 

Using these relations and the inequality [ z -  21-'~< 13-1-~, we obtain that 

2 
d.(z) ~ -  (2.31) 

n I~zl 2 

and somewhat more detailed arguments based on the same technique yield 
that d,(z)=O(n-2).  These relations [cf. (2.25)] imply the weak self- 
averaging property of the IDS, i.e., the factorization property of the respec- 
tive measures. The pointwise factorization properties can be proven based 
directly on (2.30) and on the Christoffel-Darboux formula from the theory 
of orthogonal polynomials, 

I ~kl:~ ,h(")~ ~ Ib ' ' )  
K,,(2, a)  = - .  

n 2 - #  
(2.32) 

Thus, if ~kl")(2) is bounded for any fixed 2, all n, and l=n,  n - 1 ,  then 
(2.30) and (2.32) imply the factorization of p,,(2,, 22) into the product 
p,,(21) p,,(22) for 21 = 22 and n---, ~ (and in fact all the higher correlation 
functions for distinct arguments). The proof of the same property for coin- 
ciding arguments is based on the analog of (2.32) for 2 =/z, which contains 
the derivatives of ~")(2) for l=n,  n -  1 in its r.h.s. Thus, in this case we 
need boundedness of the respective derivatives uniform in n. 

3. AUXIL IARY RESULTS 

L o m m a  1. If a function V(2) satisfies condition (1.2), then there 
exists a positive number L such that if we define p,,L(2~ ..... 2,,) as 

s~ 

p,,L(2,,..., 2,,) = (Z,,L)-' f I-[ XL(2,) d2, exp{ -nil , ,(2,  ..... 2,)} 
I ~ m +  1 

z,,.=f fi . . . . .  

i : l  

(3.1) 



6.02 Boutet de Monvel e t  al. 

where XL(2) is the characteristic function of the interval ( - L ,  L), then for 
I;, I,..., 12"1 ~<Z, 

Ip,,(21 ..... Am) --p,,L(2~,..., 2,.)1 <p,,L(2~ ..... 2,.) e - ~  (3.2) 

and for I,~,l ..... [Ajl>lZ,  lA~+~l ..... IL, I~<L, 

1p,,(21 ..... 2,,,)] ...< exp - n C '  ~. In lAkl (3.3) 
k k ~ l  

where C and C' do not depend on n and m. 

Proof.  Let us choose L > 2e to satisfy the inequality 

(0 V ( 2 ) - m a x  V(2')> 2 + ~  ln[A[, 12I>L (3.4) 
12q < e 

and represent p,,(2~ ..... Am) as follows: 

p,,(Am ..... 2.1) = Z y  t n m ,k(,,,]. ) dAi 
k = O  i = m + l  

(3.5) 
tt " n  \ 

Z n m k ~ o  ( k )  f l k (2 )  f i  dAi 
i=m+l 

where 

n - -  k 

,,12/= 1-I (I 
i= 1 i=n--k + 1 

Then we can write 

[1 --XL(2,-)] exp{ -ni l , , (2, , . . . ,  2,,) } 

f lk(2) fi dAi 
i=n--k+ I 

= ~ r i o ( 2 ,  ..... 2,,_k,2,,_k+,+2j,  L,...,2,,+2jkL) 
jl,,..,jk = +_ 1, +2,. . .  

Now we will estimate 

f i  dAi 
i=n--k+l  

(3.6) 

z J = l n f I o ( 2 ,  ..... 2 , , _ k , 2 ; , _ k + , + 2 j ,  L ..... 2;, + 2j/.L) f i  
i~n- -k+l  

- f  2' ;:,3 1~ dA; I n  Io(At,.--, 2n--k . . . .  k + l  . . . . .  

i=n--k + 1 
(3.7) 



Random Matrix Theory 603 

To this end, we divide the interval ( - e ,  e) into n 2 equal intervals by the 
points y~ ..... y,,2_1. Now for any fixed configuration {21 ..... 2,,_k} we 
exclude y's which are the nearest neighbors of {2j} and consider 
2en -2 Zyiln [y i -2 r l .  Since for all r, 

we have 

~ e  
2en-2 ~ In ly;-)-~l > In l y - R r l  dy+O(n-2)>>.O(n -2) 

--e Yi 

n - - k  

2en-:~. ~ In l y ~ - 2 ~ l > ( n - k )  O(n -z) 
Yi r =  | 

Thus, there exists y~ such that 

n - - k  

~. In lyi-Rrl > ( n - k )  O(n -2) 
r = l  

Let us set 2,,_k+] = y~ and repeat the above procedure for {21 ..... 2,,_k+ l} 
Then, we find 2,,_k+ 2 such that 

n - - k + ]  

In lyi-2rl  > ( n - k  + l) O(n -2) 
r = l  

After k steps, we will have the configuration ;q ..... ,~,, such that 

and 

Thus, 

IA,,_k+p--2r[ >~2en -2, r, p > 0  (3.8) 

k :t - -k  + p  

~ In l y ; -2 r l  >knO(n-'-) (3.10) 
p = l  r = l  

Let us change the variables in the first term of the r.h.s, of (3.7): 

L f i  f Io(2],..., 2,,_k, 2' +2jlL ..... 2',,+2jkL) d2'j n - - k + ]  
- - L  i = n - - k +  1 

n - 3  k 

=(Lna)k f Io()'],"',2,-k, Ln3t]+2Jl L ..... Ln3tk+2jk L) I-I dti 
n - 3  -- i = ]  

n - -k  + p  

~. In l y i -2 r l  >O(n -~) (3.9) 
r = l  
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We obtain that A ~<k In Ln 3 + A1, where 

A 1 = n max { H,,(21 ..... 2,_k, Ln3tl + 2jl L ..... Ln3tk + 2jkL) 
I 

- H,,(21 ..... 2,,-k, 2,,--k+ I + t] ..... 2,, "t- tk) } 

and 2,,_k+ ~ ..... 2,, are chosen by the above procedure and satisfy (3.8) and 
(3.9). Thus, 

k 

zl~ ~< - n  ~ f V((2 IJpl- l ) Z ) -  max V(2')] 
p =  1 I - - e ,  e] 

k n - -k+p  k n - -k+p  
+ ~ ~ ln (2 [ jp [+2)L- -  ~ E ln[y~-2, .[  

p = l  r = l  p = l  r = l  

k n - -k+p  
<~-en/2 ~ ~ ln(21Jpl-1)L+knO(n -2) 

p = l  r = l  

and, as a result, 

~ I k ( 2 )  f i  dJ.i 
i = n - k +  1 

<<. (Ln3) k 2((2 j -  1 )L) .... /z) lo(2 ) d2i 
j l i = n - - k + l  

~ const, f 1 o ( 2 ) f i  d2, e x p ( - k n ~  l n L  ) 
i=n- - k  + 1 

Therefore, by using the representation (3.5) we obtain 

p,(2, ..... 2m) =p,L(2,  ..... 2,,)(1 + O(e-"M)) 

Inequality (3.3) can be proved similarly. 

l . emma  2. If the operators A, A,, are defined in L 2 ( -  1/2, 1/2) by 
relations (2.13) and (2.14), then 

O<.Ao<~A,,~A 

where the operator A 0 is defined by relation (2.13) with ao(x) = 1 - Ix [ .  

Proof. It is enough to prove that for any convex positive function 
l(x) defined on the interval (0, 1/2) the operator A ") defined in 
L 2 ( -  1/2, I/2) by the formula 

(A"f)(x) =f]/'- / ( Ix-y l )  dy 
- -  1 / 2  
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is positive. Consider the operator B defined in L2(- 1, 1 ) as follows: 

1 

(Bf)(x) = f l ( x - y ) f ( y ) d y  (3.11) 
- - I  

where [(x) is a 2-periodic continuation of l(lxl) defined in the interval 
( -  1, 1). As is well known, the operators of this form have a spectrum 
which consists of the Fourier coefficients of the periodic function [(x). 
Therefore the positivity of B is a consequence of the inequalities 

I 

l (* )=f  l ( Ix l )cosrckxdx>O,  k=O,  I,... (3.12) 
--I  

For k = 0, 

For k > 0 ,  

l Ik} = 2 I t 
Jo 

1 

llO)= _f l(Ixl)dx>O 
- - 1  

l(x) cos(nkx) dx = ~ sin(nkx) l '(x) dx 

_ _ f l / k  
sin0zkx) [ l '(x) - l ' (x + 1/k) + l '(x + 2/k) + ... ] dx 

- -  ~ 0  

But since l '(x) is an increasing function for x > 0, we conclude that l ~ )  > 0 
and therefore B is positive. Now, for any function f e  L 2 ( -  1/2, 1/2), let us 
consider the function f ~  L 2 ( -  1, 1) such that 

f = {0f(x) if Ix[ ~< 1/2 
otherwise (3.13 ) 

Then it is evident that (A"f ,  f ) =  (Bf, f ) l  > 0, where we denoted by (.,.)1 
the scalar product in L2(- 1, 1). Lemma 2 is proved. 

Lemma 3. Let the functional O,,(c) be defined on the space L* of 
the functions satisfying inequality (2.7) by the formulas [cf. (2.9)] 

O , , ( c )  = - I n  Ix- yl c(x) c(y) dx dy 
- / 2  

-1/2 dx exp { - n v ( x )  + n _ + ! l n f  ~/~ f~/i/2 in Ix - y[ c( y) dy I 
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Then: 

(i) 

(ii) 

(iii) 

qL,(c) has the unique point of the extremum, c , ,  which is the 
solution of equation (2.12). 

There exists p = L* - lim . . . .  c,,. 

p(x) satisfies relations (1.7)-(1.11) and these relations determine 
p uniquely. 

Proof. (i) Since the operator  A specified by (2.13) is positive, it is 
easy to see that ~,,(c) is convex, i.e., 

l~n ( C @ )  ~< I~n(C 1 ) "4- t~n(c2) 2 

Besides, on the basis of the Jensen inequality we have 

11n fl/; ax ex~ {--,~(x) + 2. f'"- } - d y  In Ix - Yl c ( y )  
II 2 ~-- 1/2 

f l / 2  f l / 2  <~ - v ( x )  d x  + In I x - Yl c ( y )  dx dy 
- -  I / 2  - -  1/2 

and 

�9 ,,(c) ~> 2'-/At, c ) -  r'"- d x - f  'p- (Ac)(x) v(x) dx 
o_ 1/2 -- I/2 

rl /2 rl/2 
>~ �89 J-,/z In l x -  yl dx d y - - - , n  vCx) dx 

Therefore q~,,(c) is bounded below. Consider a minimizing sequence { CIk)(X)} 
such that 

lim ~ , , ( d  k)) = in f  qL,(c) - r 
k ~ ':'J~ c ~ L * 

Then, for any e > 0, 

r + e > r ~k~) > ,~,* 

if k is large enough. For  these k and m, 

r  
r  k)) + r  > q~,, ( c(kl + c"l '~ 

7- ) > ~''* 
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Thus, 

(A(c Ck) - d,,,)), (c~k~ _ d,,~)) 

<~8 ( ~'(cck))+~'(c''))-~''2 (c(k)2c(")))-- ~<4e (3.14) 

In other words, the sequence {c ~k)} satisfies the Cauchy conditions in the 
Hilbert space L* with a scalar product ( . , . ) .  = (A., �9 ) and, as a result, has 
the limit c,, in this space. This point c,, is a point of the extremum for ~,,. 
Besides, since the second derivative of q~,, in any direction is bounded 
below by 1, then c, is a unique extremum point. Now, taking the first 
derivative of q~,, at the point c,,, we obtain that c,, satisfies Eq. (2.12). 

(ii) According to the H61der inequality, 

(f,/2 ,,1/,,,+,, ( f l /2 exp{nu(x,} d x ) l / " ~  exp{(n+ 1)u(x,} dx)  
\ o _  1/9_ \ o _  i/2 

Therefore for any c, ~,,(c)~< ~,,+1(c), and thus 

�9 ,(c,,) ~ ~,,+ i(c,,+ 1) 

Besides, it is easy to see that the sequence of numbers ~ , (c , )  is bounded 
from above and therefore from the latter inequality it follows that for any 
e/> 0 there exists a number n such that for any m ~> n, 

O <~ ~,,,(c,,,)-~,,(c,,) <~ e 

On the other hand, since c. is the minimum point of ~ . ,  

0 <~ c1,,,(c.,) - ,~,*, <~ ~.,(c,,,) - ,I,,,(c,,) <~ e 

Thus, repeating the arguments (3.14), we get 

(A(c,, - c.,), (c,, - c.,)) <<. 4e 

This inequality implies that the sequence c,, of the minimum points is 
fundamental in L* and therefore has the limiting point p in this space. 

(iii) Consider 

Since 

- ~ 1 / ,  I n  I x  - y [  c, , (y)  dy - v(x)  

f 1~2 lim (n)- ]  In exp{nu,,} dx < 
n ~ ~ - -  1 / 2  
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we conclude that the function 

~ 1/2 

u(x)= lim u , (x)=  In I x - y l  p(y) dy -v (x )  
n ~  oe ~ - - 1 / 2  

is bounded above. Consider u* = max u(x). It is easy to see that if for some 
x, u(x) < u*, then 

p (x )=  lim c,,(x)= lira exp{nu,,} = 0  
. . . . . . . .  e x p ( , , , , }  

Thus, suppp(x)c{x:u(x)=u*} .  Therefore p(x) satisfies conditions 
(1.8)-(1.12). Suppose that there exists another function pl(x) satisfying 
these conditions. Let 

u,fx)_[  '/'- -_t/21nlx-ylpl(y)dy v(x) 

Consider 

r,, =Pl + n-l/2(c,,--Pl) 

f U2 u},(x) = In Ix--yl  r, ,(y)d.),--v(x)=u I + R - I / 2 ( u , , - - u  1) 
- -  1/2 

= Li I . .{_/ , / - -1/2(/ , /  _ g / l )  . +  H - - 1 / 2 ( / , / n  - - / , / )  

Since qs,, is a convex functional, then 

0 < ~ , , ( , ' , , )  - ~ , , ( c , , )  ~< - (r , , .  u], - u . )  + 
I t_/]/2 (u~, - u,,) exp{nu'} dx 

I ~/2 exp{ nu~,} dx 
( 3 . 1 5 )  

Besides, since % ~ p, the r.h.s of (3.15), S,,, can be rewritten as 

S,,= -(pl ,u '-u) 

I '/2- ,/2 (ul--u) exp{nu'+x//-n(u--u')+o(v/nl)} dx 
+ 

I~/2 exp{nu' + v/~ ( u -  u') + o(v/~)} dx 

--, - ( p t , u l - u ) +  min (ut-u)+o(1) 
Ill(x) = m a x  I I  I 

+o(1) 
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and p~ satisfies conditions (1.8), (1.9), 

[ T r ( A - A , , ) G I  ~< const �9 - -  

Proof. By the definition (2.13), 

ITr(A --A,,)GI 

r 1/2 p , ( y ) ]  = dxdy [In I x - y l - a , , ( x - y ) ] [ p , , ( x ,  y ) -p , , (x)  
~--  1]2 

f 1~2 = dxdy [In I x - y ] - a , , ( x - y ) ]  
-- 1/2 

x [p,(x, y) - p , ( x )  p,,(y)] @,,(x-- y) 

t/2 

<<" --i/2 dx dy ([ln i x -  Yi[ + const-  In t7) 

x [p,,(x, y)  + p,,(x) p , ( y ) ]  ~, , , (x-  y) (3.17) 

where ~b,,(x) is the characteristic function of  the interval ( - n  -3 -~, n -3 - , ) .  
Let us now estimate 

I;. = f @,,(x - y)  p . (x ,  y)  [ln I x - YI[ dx dy 

To this end, we rewrite r,, as follows: 

Iln Jx - Y[I" [x - y[ ~b(x, y) ~,,(x, y) dx dy 
r,, - (3.18) 

Ix - yl r y) ax dy 

I n  n 
(3.16) 

n 

Since supp p i c { u'(x) = max u I } 
then 

(P],  ul - u) > min(u ] - u) 

and we have S , ,=o(1) ,  n ~  oo, and as in (3.14) we get 

( p l - p ,  p l - p ) . = ( r , - c , , r , - c , , ) + o ( 1 ) - * O ,  n--*oo 

Therefore p ~ = p. 
Lemma 3 is proved. 

L e m m a  4. If the operators A, A, ,  and G defined in L 2 ( -  1, 1) are 
specified by formulas (2.13) and (2.14), then 
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where 

r y ) =  f e x p  { - n v ( x ) - n v ( y ) - n  ~ v(x,)+ ~ In Ix--x,I 
i = 3  i = 3  

+ ~. I n l y - x ; [ +  ~ l n l x i - x j l ) d x 3 . . . d x  . 
i=3 3<~i<j 

. . . .  _ ~,/2 exp{ --nHl(x,  y, x3 ..... x,,)} dx3 dx, 
- n / 2  

Let us change the variables in the integral (3.18): 

x '  = x - -  n - = ,  y '  = y + n - 4  

, ~xi--n -~ if X i < ~ l ( x + y )  

x i = ~ x i W n - ~  i f  x i > � 8 9  ) 

Since V(x) satisfies the H61der condition (1.2c) and c~ = 2/y, then 

1 1 
Iv( xi) - v( x'i) I = I V(Lxi) - -  g( Lx'i) I <~ const .--n "~' = const .n-- I 

(3.19) 

r ; ,=Ir  Iln I x - Y l l  dxdy<~const Inn  
n 

.,, f 1 i,, = O,,(x - y) p,,(x) p,,(y) dx dy <~ c o n s t . -  
n 

Finally, from (3.18), we obtain (3.16). 

Besides, under this change of variables all the differences will either be the 
same or increase. Therefore, 

1 
Ht(x,  y ..... x,,) <~ H~(x ', y', .... x',,) + c o n s t . -  

n 

and we obtain the inequality 

~b(x, y)~< const .  ~b(x', y ' )  

Inserting this esitmate into (3.19), we get 

n -1 - "  In n Iix, .,/i ~>n_,~ ~(X', y') dx' dy' 
r,, ~< const 

5Mx,_y,t>~,,-=~(x', y') I x ' -  y'l dx' dy' 

n - l - = l n n  51.,.,_.r ~>,,-~ ~b(x', y') dx' dy' Inn  
~< const - const �9 - -  

Jlx,_ y,i >~,,-. n -=$(x  ', y') dx' dy' n 

By the same arguments, we can prove also that 
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